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On the mechanism of facetted growth 
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Sweden 

The morphology of silicon crystal precipitate in a hypereutectic AI-Si  alloys is analysed. 
The morphology is investigated at different cooling rates. A theoretical model describing 
the growth of facetted crystals is developed. The most important parameters for the 
formation of the observed crystals are determined. 

1. Introduction 
Many different morphologies have been observed 
on crystals grown from melt and vapour. The most 
common types of crystals formed from a melt are 
the dendrite (composed of rounded branches), and 
the facetted crystal, which can be cubic, 
octahedral, columnar or platelike. A transition 
between the dendritic and facetted form is also 
observed. In this paper a simple mathematical 
model for the crystal growth is derived. It takes 
into account anisotropy in the surface tension as 
well as the interfacial reaction, and it also explains 
the formation of facetted crystals. Silicon crystals 
precipitated in hypereutectic aluminium-silicon 
alloys are discussed first. The crystal morphology 
in this system varies with the cooling rate, 
nucleation frequency and small additions of 
alkaline metals such as sodium. Silicon crystals 
have a cubic lattice and the same crystal mor- 
phologies as many other metallic systems with the 
cubic lattice. The morphology was analysed with 
the help of the scanning electron microscope 
(SEM) in deep-etched samples. 

2. Preparation of the samples 
The same method as in the previous study [1] was 
used in this work. The alloy with 17% silicon was 
made in a graphite mould with a diameter of 
50 ram. From this alloy samples of 15 g were taken 
and treated with sodium. The samples were solidi- 
fied by moving them to the colder part of the fur- 
nace. The first experiment was made with sodium; 
in the second experiment the samples were held in 
the furnace for such a long time that most of the 
sodium was evaporated. The samples were then 
solidified. Small samples were taken for metallo- 
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graphic investigation. Preparation of the samples 
for SEM observations is described in our earlier 
paper [1 ]. 

3. Growth morphologies 
Owing to twin planes in the crystals, various types 
of morphologies were observed in each sample. 
These forms were discussed in the earlier work. 
The present discussion only concerns crystals 
without twin planes. 

3.1. Ingots  
All the crystals observed in the ingot were formed 
with (1 1 1) facets. The ideal shape is octahedral. 
Fig. 1 shows an example of a nearly perfect 
crystal. Fig. 2 shows an example where the crystal 
has deviated from the ideal morphology. In this 
case the (1 1 1) facets contain holes and the corners 
have been elongated. 

3.2. Sample with high sodium content 
The effect of sodium is illustrated in Fig. 3. It 
shows that the crystals are now formed with (111) 
and (100) facets. The (100)  facets are the 
dominant. 

3.3. Sample with low sodium content 
Figs. 4 and 5 illustrate the crystal morphologies 
observed in an alloy with low sodium content 
after slow solidification. The crystals are bounded 
by (111) and (100) facets. 

4. Discussion 
All of  the crystals discussed may be characterized 
as facetted. The facet is often explained as an 
effect of anisotropic growth where the most slow- 
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lSggure I The octahedral shape of one silicon crystal. 

growing facet becomes dominant. This is true if the 
growth is not limited by the rate of transport of 
matter or heat in the surrounding matrix. In order 
to analyse the growth process in detail, one has to 
consider both the interface reaction and the 
diffusion process outside the growing crystal. In 
addition, one has to consider the effect of surface 
tension on the growth rate. An isotropy of the 
surface tension might influence the shape of the 
crystal. These three variables influence the crystal 
morphology during solidification. The diffusion 
field around a growing facetted crystal was 
experimentally studied by Berg [2] and 
Humphreys-Owen [3]. For relatively small crystals, 
Humphreys-Owen found that the diffusion field 

Figure3Facetted silicon crystal with both [100] and 
[111 ] facets. High sodium content. 

around a growing crystal was nearly spherical. 
Fig. 6 shows an example. The lines around the 
crystal are isoconcentration lines. It is interesting 
to note that the concentration from the midpoint 
of a facet to the centre varies. This variation is 
described schematically in Fig. 7. The figure shows 
that the driving force for diffusion is largest at the 
midpoint and lowest at the corner. The super- 
saturation on the surface which is equal to the 
driving force for the interface reaction is smallest 
at the midpoint and largest at the corner. 

This conclusion is now used in a comparison of 
the growth rates for two different facets. In order 
to examine the net effect of the mass transport 
and the interface kinetics, a treatment based upon 
the theory of diffusional growth of a spherical 
particle is used. 

Figure 2 The start of the formation of a hopper crystal. 
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Figure4 Facetted silicon crysta!s with both [100] and 
[I 11] facets. Low sodium content. 



Figure 5 Same sample as in Fig. 4, illustrating that the 
facets can vary in size. 

The shape of the particle is estimated by 
calculating the rate of the interface reaction in 
the diffusion field. In this work the effect of the 
surface tension on the growth process is also 
considered. The analysis starts with a derivation 
of the critical size of a facetted nuclei, which is to 
be used later in the growth theory. 

4. 1. The nucleation of facetted crystals 
The classical method to determine the size of a 
nucleus is to consider the difference in free energy 
between a solid nucleus and the melt: 

AGto ~ - AGm V +  ~;O[xxxlA, ( i )  
Vm 

where AG~ is the difference in molar free energy 
between solid and melt, Ox,,x the specific surface 

, i 

Figure 6 Isoconcentration lines around a growing facetted 
crystal according to Humphreys-Owen [3 ]. 

free energy of facet, A the total area of facets 
(xxx), V~ the molar volume, and V the volume of 
particle. This equation is used to determine the 
critical size of the nucleus. In a system where the 
surface free energy is isotropic, the nucleus is a 
sphere with a critical size of: 

2oVm 
R *  - ( 2 )  (- zxcm)' 

Normally the surface free energy is not isotropic. 
In this case the nucleus is dominated by the 
surfaces with the lowest free energies. For cubic 
systems, these surfaces are the (100) and (11 l)  
facets. In this treatment, only these two facets 
are considered. It is assumed that the surface free 
energies for all other facets are much larger. By 
minimizing the total surface free energy one 
obtains the shape of the crystal for a given volume. 
The distances from the centre of the crystal to the 
midpoint of  a facet is given by the following 
expression. 

, 2~ 
R(111) - ( 3 )  (- zXC~) 

2o[lO o] Vrn 
R~loo) - (_ AGm) " (4) 

Equations 3 and 4 show that an octahedral is 
formed when Oaoo is at least three times larger 
than otlx. In the same way, o111 must be three 
times larger than O~oo for a cubic nucleus. When 
the ratio atoo for a cubic nucleus. When the ratio 
~1oo/Oloo falls between 1/31/2 and 31/2 the nucleus 
will be bounded both by (100) and (11 l) facets. 

4 . 2 .  Spherical  g rowth  
The growth of a spherical particle in a dilute 
solution has been treated by several authors, 
e.g. Zener  [4]. It has been shown that the con- 
centration field can adequately be described by 
kaplace's equation: 

B 
x L = A + -  ( s )  

r 

where r is the distance from the centre of the 
particle, and X s the concentration in the liquid. 
By applying the proper boundary conditions, 
zonstants A and B can be determined. 

XL/ ,~_Xo L 
X s = X~ + R, (6) 
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Figure 7 The concentration distribution at the 
surfaces of cubic crystals. The full vertical lines 
represent the corners of the crystal. From 
Humphreys-Owen [ 3]. 

where X0 n is the initial composition and X L/a is 
the composition of L in contact with the growing 
phase. R is the radius of the a-particle. The growth 
rate is estimated by using Fick's first law. 

/, \ dR= 
DI'.--] /(X I'l~ - x  '~/L) 

dt \d r ]n  

_ D_ , x  LI~-  X~o 
R X L/~ -- X ~ 

(7) 

The first term on the right-hand side describes 
the driving force necessary to form new surfaces. 
The second term on the right-hand side describes 
the driving force for the diffusion process and is 
given by Equation 7. Combining Equations 7, 8 
and 9 gives: 

dR D ( X  L/~ --XLo) [1 -- (R*/R)] 

dt - R - (xL/Ce __X~/L) .(10) 

This equation describes the growth rate of a 
spherical particle influenced by surface tension. 

It was pointed out by Zener [5] that this 
expression shows that the growth rate tends to 
infinity when the radius tends to zero. This is 
impossible owing to the fact that the growth rate 
of a nucleus is zero. The normal way to treat this 
problem is to take into account that the driving 
force for diffusion decreases owing to the surface 
tension on the particle. According to Zener [5], 
this term can be related to the critical size for 
nucleation by the following relation: 

R* 
x L l ~ - x ~ l  '~ = ( x " l ~ - x L o ~ ) - ~ .  (8) 

The driving force can now be divided into two 
terms: 

x L ~  _ Xo ~ = ( x ~  -xo~,  ~) + ( x ~  ~ - Xo~) .  

(9) 

4.3. The effect of interface kinetics 
Equation 10 describes rather well the growth 
process when it is controlled by diffusion. When 
the interface reaction is slow it affects concen- 
tration at the interface and the growth rate as well. 
A simple way of combining the effect of diffusion, 
surface tension and interface kinetics is to divide 
the driving force into three terms: 

xL~,~_ Xo ~ = (xL/~,- x~,~) + (x~ ,~ _ x~,~) 
+ (x~/~- Xob. (11) 

The first term on the right-hand side gives the 
driving force due to the surface tension and is 
described by Equation 8. The second term gives 
the driving force for the interface reaction, and the 
last gives the driving force for the diffusion 
process. This term is identified as X L j ~ - X 0  L in 
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Equation 7. It may be complicated to describe the 
interface kinetics. It is often approximated by the 
following simple relation [6]: 

dR _ .(x~l~ x~/~)n, (12) 
dt 

where p and n are two constants. On the basis of  
theoretical modelling, n is often put equal to 1 or 
2 but can have any value in between. In the 
present work n is assumed to be equal to 1. 
Inserting Equations 7, 8 and 12 into Equation 11 
gives: 

x L / ~ _  Xo L = 

d R R  

R* (dR1) 
(x L/~ - Xob ~- + -/7 

+ d--ts ( xL /a - -X~ /L )"  (13) 

This expression can be solved for constant values 
o f  (X  L/~ -- XLo) and (X  LIe -- x~ /L) .  The growth 

rate as function of size is then described. By 
rearranging Equation 13 one obtains: 

~-~-= ( x L / ~ - - x L ) [ 1 - - ( R * / R ) ]  (14) 
dt (R/D) (X  LIe -- X ~/L) + (1/p)" 

Calculations of  the growth rate were performed 
with D = 10 -8 m 2 sec -1, X L/~ - - X  wL = 0.8, 
X L/~-Xo L = 0.01 and a =  0.1 J m  -2. 

Fig. 8 shows the results of  the calculations and 
demonstrates the effect of  different values of  p on 
the growth rate as function of  particle size. The 

Figure 8 The growth velocity of a spherical 
particle as a function of particle size. 

figure shows that the maximum growth rate occurs 
at larger values o f  R with decreasing p. In order to 
analyse this in more detail, Equation 12 was 
derived and R for maximum growth rate is: 

R~ax = R* + R* R* + . ( X L / ~ X ~ / ~ ) / t  

(15) 

It shows that in the limit p -+ ~,  R = 2R*. Fig. 9 
shows Rma x as a function of  D/[p(X L/~ - -x~ /L)] .  
The figure shows that Rm,x is much larger than 
twice R* for larger values o f D / [ p ( X  L/c~ - x~/L)].  
To find out the size of  the particle as a function of  
time, Equation 14 was integrated from t = 0 to 
t = t and R = Ro to R. The integration gives: 

t - p ( x L m _ x L  ) - - R o + R * l n  R - - R *  

xL/~_ X~/L ( 
+ D ( x L ~ - -  - xL----- ) 1�89 [(R -- R*) 2 -- (Ro - -R*)  2 ] 

[ R z R * l l  . (16) 
+ 2e* ( e - R o )  + e .2 in \Ro--R*JJ 

Fig. 10 shows the size of  the crystal as a function 
of  time for different kinetic coefficients. All other 
values were the same as those used for calculation 
of  Fig. 8. 

4.4. Anisotropic growth 
It was pointed out earlier that a facetted crystal is 
bounded by the slowest growing facets. If the 
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Figure 9 Rma x as a function ofD/#(X L /a -  
X alL) =A. R* is given in Fig. 8. 

growth process is completely interface-controlled, 
Equation 12 describes the size and the shape of  a 
crystal. The growth process is controlled by the 
diffusion process and the effect of  the surface 
tension as well. It is difficult to make a theoretical 
analysis of  the diffusion field around a facetted 
crystal. Using Equation 5 and interpreting R as 
the distance of  the midpoint o f  the facet to the 
centre of  the crystal and X L as the composition of  
the liquid at the midpoint, denoted by Rxx x and 
XLxl~x gives: 

X L = XLo + (XLx/x~ --XLo)Rxxx/r .  (17) 

Corresponding to Equation 7, the advancement of  

the midpoint is described by: 

dRxxx D : l / L i c e  - -  X 0  L 
- ~ x x x  

dt Rxxx yL/ce _ X ~ / L  �9 (18) 
" ~ X X X  

Equations 13 and 16 can be used to describe the 
growth rate of  the midpoint of  each facet, and also 
the distance from the centre of  the crystal to the 
midpoint o f  a facet. The critical radius, Rxx x , is 
given by the nucleation theory. In view of  the 
approximation of  the concentration field it seems 
justified to use the further approximation that the 
facets are perfectly planar. Equation 16 can then 
be used to evaluate the relative size of  different 
facets. For a cubic crystal we shall now only 
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Figure 10 The size of a particle as a function 
of time; R* is given in Fig. 8. 
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Figure 11 The change of crystal shape with increasing size. 

consider the (100)  and (111)  facets. Fig. 11 illus- 
trates a series of  calculations giving the shape of  
the crystal as a function of  time. In the calcu- 
lations it is assumed that alOO = 0111,//111 < PlOO. 

The calculations show that the crystal from the 
beginning is an octahedral with cut off  corners. 

Later on, owing to the anisotropy in the interface 
reaction, an octahedron is formed. When the size 
of  the crystal increases, the shape will change and 
an octahedron with cut off  corners forms again. 
This is due to the transport of  matter being more 
important the larger the crystal is. In order to find 
out how the shape of  a crystal is changed with 
different parameters, a series of  calculations was 
performed to illustrate the formation of  an 
octahedron. By using Equation 14 in the (100)  
and (1 l 1) directions, R i l l  andRloo as a function 
of  t are calculated. In this calculation the ratio of  
P m / P l o o  was varied and different values of  A 
were used, where A is defined as: 

* ( x L / ~  -- X a l L ) / D  A = R111/.L111 

Fig. 12 shows the results of  the calculations. At 
values of  A larger than 0.5 no octahedrons can 
form. Decreasing A gives a higher tendency for 
formation of  octahedrons. 

Fig. 11 indicates that the octahedron cannot 
preserve its shape when the size of  the crystal is 
increasing. This effect is also illustrated in Fig. 12. 
At very low values of  A the octahedral shape will 
persist until the crystal has reached a very large 
size. In this case the assumption of  a spherical 
diffusion field does not hold. The corner will 
now grow faster than the sides and crystals such as 
the one illustrated in Fig. 2 will form and our 
simple model is no longer valid. 

In our calculations, we have only treated a 
cubic system and only analysed growth in two 
different directions. It is possible to treat the 
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Figure 12 The change of crystal shape as a 
function of pl 11/Pl oo for different values of 
A = [RTz 1#111 ( xL/G-Xa/L)]/D. 
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growth in any direction and for the case of a 
smoothly varying kinetic coefficient, rounded 
crystals will form. 

5. Conclusion 
In this paper a simple theoretical model describes 
the formation of facetted crystals in melts. In spite 
of its simplicity the most important parameters for 
the formation of facetted crystals are analysed. 
The most dominant parameters are the interface 
kinetic and the transport of matter. The surface 
tension is effective only for very small crystals. 
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